ported LF int-string map

master
Robinson 2023-08-02 20:17:21 -06:00
parent dc45dcf0e5
commit bc8edb8f4b
No known key found for this signature in database
GPG Key ID: 8E7DB78588BD6F5C
2 changed files with 209 additions and 225 deletions

View File

@ -1,225 +0,0 @@
package dorkbox.collections;
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
/**
* This class uses the "single-writer-principle" for lock-free publication.
* <p>
* Since there are only 2 methods to guarantee that modifications can only be called one-at-a-time (either it is only called by
* one thread, or only one thread can access it at a time) -- we chose the 2nd option -- and use 'synchronized' to make sure that only
* one thread can access this modification methods at a time. Getting or checking the presence of values can then happen in a lock-free
* manner.
* <p>
* According to my benchmarks, this is approximately 25% faster than ConcurrentHashMap for (all types of) reads, and a lot slower for
* contended writes.
* <p>
* This data structure is for many-read/few-write scenarios
*
* This is an unordered map that uses int keys. This implementation is a cuckoo hash map using 3 hashes, random walking, and a small stash
* for problematic keys. Null values are allowed. No allocation is done except when growing the table size. <br>
* <br>
* This map performs very fast get, containsKey, and remove (typically O(1), worst case O(log(n))). Put may be a bit slower,
* depending on hash collisions. Load factors greater than 0.91 greatly increase the chances the map will have to rehash to the
* next higher POT size.
*/
@SuppressWarnings("unchecked")
public
class LockFreeIntStringMap<V> {
public static final String version = Collections.version;
private static final AtomicReferenceFieldUpdater<LockFreeIntStringMap, IntMap> mapREF = AtomicReferenceFieldUpdater.newUpdater(
LockFreeIntStringMap.class,
IntMap.class,
"map");
private volatile IntMap<V> map;
public LockFreeIntStringMap() {
this.map = new IntMap<V>();
}
/**
* Constructs an empty <tt>IntMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
*
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public
LockFreeIntStringMap(int initialCapacity) {
map = new IntMap<V>(initialCapacity);
}
/**
* Constructs an empty <tt>IntMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public
LockFreeIntStringMap(LockFreeIntStringMap map) {
this.map = new IntMap<V>(map.map);
}
/**
* Constructs an empty <tt>IntMap</tt> with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
*
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public
LockFreeIntStringMap(int initialCapacity, float loadFactor) {
this.map = new IntMap<V>(initialCapacity, loadFactor);
}
public
int size() {
// use the SWP to get a lock-free get of the value
return mapREF.get(this)
.size;
}
public
boolean isEmpty() {
// use the SWP to get a lock-free get of the value
return mapREF.get(this)
.size == 0;
}
public
boolean containsKey(final int key) {
// use the SWP to get a lock-free get of the value
return mapREF.get(this)
.containsKey(key);
}
public
boolean containsKey(final String key) {
// use the SWP to get a lock-free get of the value
return mapREF.get(this)
.containsKey(key.hashCode());
}
/**
* Returns true if the specified value is in the map. Note this traverses the entire map and compares every value, which may be
* an expensive operation.
*
* @param identity If true, uses == to compare the specified value with values in the map. If false, uses
* {@link #equals(Object)}.
*/
public
boolean containsValue(final Object value, boolean identity) {
// use the SWP to get a lock-free get of the value
return mapREF.get(this)
.containsValue(value, identity);
}
public
V get(final int key) {
// use the SWP to get a lock-free get of the value
return (V) mapREF.get(this)
.get(key);
}
public
V get(final String key) {
// use the SWP to get a lock-free get of the value
return (V) mapREF.get(this)
.get(key.hashCode());
}
public synchronized
V put(final int key, final V value) {
return map.put(key, value);
}
public synchronized
V put(final String key, final V value) {
return map.put(key.hashCode(), value);
}
public synchronized
V remove(final int key) {
return map.remove(key);
}
public synchronized
V remove(final String key) {
return map.remove(key.hashCode());
}
public synchronized
void putAll(final IntMap<V> map) {
this.map.putAll(map);
}
/**
* DO NOT MODIFY THE MAP VIA THIS (unless you synchronize around it!) It will result in unknown object visibility!
*
* Returns an iterator for the keys in the map. Remove is supported. Note that the same iterator instance is returned each
* time this method is called. Use the {@link IntMap.Entries} constructor for nested or multi-threaded iteration.
*/
public
IntMap.Keys keys() {
return mapREF.get(this)
.keys();
}
/**
* DO NOT MODIFY THE MAP VIA THIS (unless you synchronize around it!) It will result in unknown object visibility!
*
* Returns an iterator for the values in the map. Remove is supported. Note that the same iterator instance is returned each
* time this method is called. Use the {@link IntMap.Entries} constructor for nested or multi-threaded iteration.
*/
public
IntMap.Values<V> values() {
return mapREF.get(this)
.values();
}
/**
* DO NOT MODIFY THE MAP VIA THIS (unless you synchronize around it!) It will result in unknown object visibility!
*
* Returns an iterator for the entries in the map. Remove is supported. Note that the same iterator instance is returned each
* time this method is called. Use the {@link IntMap.Entries} constructor for nested or multi-threaded iteration.
*/
public
IntMap.Entries<V> entries() {
return mapREF.get(this)
.entries();
}
public synchronized
void clear() {
map.clear();
}
/**
* Identity equals only!
*/
@Override
public
boolean equals(final Object o) {
return this == o;
}
@Override
public
int hashCode() {
return mapREF.get(this)
.hashCode();
}
@Override
public
String toString() {
return mapREF.get(this)
.toString();
}
}

View File

@ -0,0 +1,209 @@
/*
* Copyright 2023 dorkbox, llc
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package dorkbox.collections
import java.io.Serializable
import java.util.concurrent.atomic.*
/**
* This class uses the "single-writer-principle" for lock-free publication.
*
*
* Since there are only 2 methods to guarantee that modifications can only be called one-at-a-time (either it is only called by
* one thread, or only one thread can access it at a time) -- we chose the 2nd option -- and use 'synchronized' to make sure that only
* one thread can access this modification methods at a time. Getting or checking the presence of values can then happen in a lock-free
* manner.
*
*
* According to my benchmarks, this is approximately 25% faster than ConcurrentHashMap for (all types of) reads, and a lot slower for
* contended writes.
*
*
* This data structure is for many-read/few-write scenarios
*/
class LockFreeIntStringMap : MutableMap<Int, String?>, Cloneable, Serializable {
@Volatile
private var hashMap: IntMap<String?>
// synchronized is used here to ensure the "single writer principle", and make sure that ONLY one thread at a time can enter this
// section. Because of this, we can have unlimited reader threads all going at the same time, without contention (which is our
// use-case 99% of the time)
/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
constructor() {
hashMap = IntMap()
}
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
*
* @throws IllegalArgumentException if the initial capacity is negative.
*/
constructor(initialCapacity: Int) {
hashMap = IntMap(initialCapacity)
}
/**
* Constructs a new <tt>HashMap</tt> with the same mappings as the
* specified <tt>Map</tt>. The <tt>HashMap</tt> is created with
* default load factor (0.75) and an initial capacity sufficient to
* hold the mappings in the specified <tt>Map</tt>.
*
* @param map the map whose mappings are to be placed in this map
*
* @throws NullPointerException if the specified map is null
*/
constructor(map: Map<Int, String?>) {
hashMap = IntMap(map.size)
map.forEach { (index, key) ->
hashMap.put(index, key)
}
}
constructor(map: LockFreeIntStringMap) {
hashMap = IntMap(map.hashMap)
}
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
*
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
constructor(initialCapacity: Int, loadFactor: Float) {
hashMap = IntMap(initialCapacity, loadFactor)
}
val map: IntMap<String>
get() {
@Suppress("UNCHECKED_CAST")
return mapREF[this] as IntMap<String>
}
override val size: Int
get() {
// use the SWP to get a lock-free get of the value
return mapREF[this].size
}
override val keys: MutableSet<Int>
get() {
return map.keys()
}
override val values: MutableCollection<String?>
get() {
@Suppress("UNCHECKED_CAST")
return map.values() as MutableCollection<String?>
}
override val entries: MutableSet<MutableMap.MutableEntry<Int, String?>>
get() {
@Suppress("UNCHECKED_CAST")
return map.entries() as MutableSet<MutableMap.MutableEntry<Int, String?>>
}
override fun isEmpty(): Boolean {
// use the SWP to get a lock-free get of the value
return mapREF[this].isEmpty()
}
override fun containsKey(key: Int): Boolean {
// use the SWP to get a lock-free get of the value
return mapREF[this].containsKey(key)
}
override fun containsValue(value: String?): Boolean {
// use the SWP to get a lock-free get of the value
return mapREF[this].containsValue(value)
}
override operator fun get(key: Int): String? {
return mapREF[this][key] as String?
}
@Synchronized
override fun put(key: Int, value: String?): String? {
return hashMap.put(key, value)
}
@Synchronized
override fun putAll(from: Map<out Int, String?>) {
hashMap.putAll(from)
}
@Synchronized
override fun remove(key: Int): String? {
return hashMap.remove(key)
}
@Synchronized
fun removeAllValues(value: String) {
val iterator = hashMap.entries().iterator()
while (iterator.hasNext()) {
val value1 = iterator.next()
if (value1.value == value) {
iterator.remove()
}
}
}
@Synchronized
fun replaceAll(hashMap: IntMap<String?>) {
this.hashMap.clear()
this.hashMap.putAll(hashMap)
}
@Synchronized
override fun clear() {
hashMap.clear()
}
override fun equals(other: Any?): Boolean {
return (mapREF[this] == other)
}
override fun hashCode(): Int {
return mapREF[this].hashCode()
}
override fun toString(): String {
return mapREF[this].toString()
}
// this must be at the end of the file!
companion object {
const val version = Collections.version
// Recommended for best performance while adhering to the "single writer principle". Must be static-final
private val mapREF = AtomicReferenceFieldUpdater.newUpdater(
LockFreeIntStringMap::class.java, IntMap::class.java, "hashMap"
)
}
}