/* * Copyright 2018 dorkbox, llc * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package dorkbox.collections; import java.util.Collection; import java.util.HashMap; import java.util.Map; import java.util.concurrent.atomic.AtomicReferenceFieldUpdater; /** * A bimap (or "bidirectional map") is a map that preserves the uniqueness of its values as well as that of its keys. This constraint * enables bimaps to support an "inverse view", which is another bimap containing the same entries as this bimap but with reversed keys and values. * * This class uses the "single-writer-principle" for lock-free publication. * * Since there are only 2 methods to guarantee that modifications can only be called one-at-a-time (either it is only called by * one thread, or only one thread can access it at a time) -- we chose the 2nd option -- and use 'synchronized' to make sure that only * one thread can access this modification methods at a time. Getting or checking the presence of values can then happen in a lock-free * manner. * * According to my benchmarks, this is approximately 25% faster than ConcurrentHashMap for (all types of) reads, and a lot slower for * contended writes. * * This data structure is for many-read/few-write scenarios */ @SuppressWarnings("WeakerAccess") public final class LockFreeBiMap { // Recommended for best performance while adhering to the "single writer principle". Must be static-final private static final AtomicReferenceFieldUpdater forwardREF = AtomicReferenceFieldUpdater.newUpdater(LockFreeBiMap.class, HashMap.class, "forwardHashMap"); private static final AtomicReferenceFieldUpdater reverseREF = AtomicReferenceFieldUpdater.newUpdater(LockFreeBiMap.class, HashMap.class, "reverseHashMap"); private volatile HashMap forwardHashMap; private volatile HashMap reverseHashMap; private final LockFreeBiMap inverse; // synchronized is used here to ensure the "single writer principle", and make sure that ONLY one thread at a time can enter this // section. Because of this, we can have unlimited reader threads all going at the same time, without contention (which is our // use-case 99% of the time) public LockFreeBiMap() { forwardHashMap = new HashMap(); reverseHashMap = new HashMap(); this.inverse = new LockFreeBiMap(reverseHashMap, forwardHashMap, this); } private LockFreeBiMap(final HashMap forwardHashMap, final HashMap reverseHashMap, final LockFreeBiMap inverse) { this.forwardHashMap = forwardHashMap; this.reverseHashMap = reverseHashMap; this.inverse = inverse; } /** * Removes all of the mappings from this bimap. * The bimap will be empty after this call returns. */ public synchronized void clear() { forwardHashMap.clear(); reverseHashMap.clear(); } /** * @return the inverse view of this bimap, which maps each of this bimap's values to its associated key. */ public LockFreeBiMap inverse() { return inverse; } /** * Replaces all of the mappings from the specified map to this bimap. * These mappings will replace any mappings that this map had for * any of the keys currently in the specified map. * * @param hashMap mappings to be stored in this map * * @throws NullPointerException if the specified map is null * * @throws IllegalArgumentException if a given value in the map is already bound to a different key in this bimap. The bimap will remain * unmodified in this event. To avoid this exception, call {@link #replaceAllForce(Map)} replaceAllForce(map) instead. */ public synchronized void replaceAll(final Map hashMap) throws IllegalArgumentException { if (hashMap == null) { throw new NullPointerException("hashMap"); } LockFreeBiMap biMap = new LockFreeBiMap(); try { biMap.putAll(hashMap); } catch (IllegalArgumentException e) { // do nothing if there is an exception throw e; } // only if there are no problems with the creation of the new bimap. this.forwardHashMap.clear(); this.reverseHashMap.clear(); this.forwardHashMap.putAll(biMap.forwardHashMap); this.reverseHashMap.putAll(biMap.reverseHashMap); } /** * Replaces all of the mappings from the specified map to this bimap. * These mappings will replace any mappings that this map had for * any of the keys currently in the specified map. This is an alternate * form of {@link #replaceAll(Map)} replaceAll(K, V) that will silently * ignore duplicates * * @param hashMap mappings to be stored in this map * * @throws NullPointerException if the specified map is null */ public synchronized void replaceAllForce(final Map hashMap) { if (hashMap == null) { throw new NullPointerException("hashMap"); } // only if there are no problems with the creation of the new bimap. this.forwardHashMap.clear(); this.reverseHashMap.clear(); putAllForce(hashMap); } /** * Associates the specified value with the specified key in this bimap. * If the bimap previously contained a mapping for the key, the old * value is replaced. If the given value is already bound to a different * key in this bimap, the bimap will remain unmodified. To avoid throwing * an exception, call {@link #putForce(Object, Object)} putForce(K, V) instead. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) * * @throws IllegalArgumentException if the given value is already bound to a different key in this bimap. The bimap will remain * unmodified in this event. To avoid this exception, call {@link #putForce(Object, Object)} putForce(K, V) instead. */ public synchronized V put(final K key, final V value) throws IllegalArgumentException { V prevForwardValue = this.forwardHashMap.put(key, value); if (prevForwardValue != null) { reverseHashMap.remove(prevForwardValue); } K prevReverseValue = this.reverseHashMap.put(value, key); if (prevReverseValue != null) { // put the old value back if (prevForwardValue != null) { this.forwardHashMap.put(key, prevForwardValue); } else { this.forwardHashMap.remove(key); } this.reverseHashMap.put(value, prevReverseValue); throw new IllegalArgumentException("Value already exists. Keys and values must both be unique!"); } return prevForwardValue; } /** * Associates the specified value with the specified key in this bimap. * If the bimap previously contained a mapping for the key, the old * value is replaced. This is an alternate form of {@link #put(Object, Object)} put(K, V) * that will silently ignore duplicates * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) */ public synchronized V putForce(final K key, final V value) { V prevForwardValue = this.forwardHashMap.put(key, value); if (prevForwardValue != null) { reverseHashMap.remove(prevForwardValue); } K prevReverseValue = this.reverseHashMap.put(value, key); if (prevReverseValue != null) { forwardHashMap.remove(prevReverseValue); } return prevForwardValue; } /** * Copies all of the mappings from the specified map to this map. * These mappings will replace any mappings that this map had for * any of the keys currently in the specified map. * * @param hashMap mappings to be stored in this map * * @throws NullPointerException if the specified map is null * * @throws IllegalArgumentException if the given value is already bound to a different key in this bimap. The bimap will remain * unmodified in this event. To avoid this exception, call {@link #putAllForce(Map)} putAllForce(K, V) instead. */ public synchronized void putAll(final Map hashMap) throws IllegalArgumentException { LockFreeBiMap biMap = new LockFreeBiMap(); try { for (Map.Entry entry : hashMap.entrySet()) { K key = entry.getKey(); V value = entry.getValue(); biMap.put(key, value); // we have to verify that the keys/values between the bimaps are unique if (this.forwardHashMap.containsKey(key)) { throw new IllegalArgumentException("Key already exists. Keys and values must both be unique!"); } if (this.reverseHashMap.containsKey(value)) { throw new IllegalArgumentException("Value already exists. Keys and values must both be unique!"); } } } catch (IllegalArgumentException e) { // do nothing if there is an exception throw e; } // only if there are no problems with the creation of the new bimap AND the uniqueness constrain is guaranteed this.forwardHashMap.putAll(biMap.forwardHashMap); this.reverseHashMap.putAll(biMap.reverseHashMap); } /** * Copies all of the mappings from the specified map to this map. * These mappings will replace any mappings that this map had for * any of the keys currently in the specified map. This is an alternate * form of {@link #putAll(Map)} putAll(K, V) that will silently * ignore duplicates * * @param hashMap mappings to be stored in this map * * @throws NullPointerException if the specified map is null */ public synchronized void putAllForce(final Map hashMap) { for (Map.Entry entry : hashMap.entrySet()) { K key = entry.getKey(); V value = entry.getValue(); putForce(key, value); } } /** * Removes the mapping for the specified key from this map if present. * * @param key key whose mapping is to be removed from the map * * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) */ public synchronized V remove(final K key) { V value = forwardHashMap.remove(key); reverseHashMap.remove(value); return value; } /** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. *

*

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) *

*

A return value of {@code null} does not necessarily * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link HashMap#containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ @SuppressWarnings("unchecked") public V get(final K key) { // use the SWP to get a lock-free get of the value return (V) forwardREF.get(this).get(key); } /** * Returns the reverse key to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. *

*

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) *

*

A return value of {@code null} does not necessarily * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link HashMap#containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ @SuppressWarnings("unchecked") public K getReverse(final V key) { // use the SWP to get a lock-free get of the value return (K) reverseREF.get(this).get(key); } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own remove operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the Iterator.remove, * Collection.remove, removeAll, * retainAll and clear operations. It does not * support the add or addAll operations. * * @return a view of the values contained in this map */ @SuppressWarnings("unchecked") public Collection values() { // use the SWP to get a lock-free get of the value return forwardREF.get(this).values(); } /** * Returns true if this bimap contains no key-value mappings. * * @return true if this bimap contains no key-value mappings */ public boolean isEmpty() { // use the SWP to get a lock-free get of the value return forwardREF.get(this) .isEmpty(); } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own remove operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the Iterator.remove, * Collection.remove, removeAll, * retainAll and clear operations. It does not * support the add or addAll operations. * * @return a view of the values contained in this map */ @SuppressWarnings("unchecked") public Collection reverseValues() { // use the SWP to get a lock-free get of the value return reverseREF.get(this).values(); } }