Collections/src/dorkbox/collections/IntMap.kt

1034 lines
34 KiB
Kotlin

/*
* Copyright 2023 dorkbox, llc
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*******************************************************************************
* Copyright 2011 LibGDX.
* Mario Zechner <badlogicgames></badlogicgames>@gmail.com>
* Nathan Sweet <nathan.sweet></nathan.sweet>@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package dorkbox.collections
import dorkbox.collections.Collections.allocateIterators
import dorkbox.collections.ObjectSet.Companion.tableSize
import java.util.*
/**
* An unordered map where the keys are unboxed ints and values are objects. No allocation is done except when growing the table
* size.
*
* This class performs fast contains and remove (typically O(1), worst case O(n) but that is rare in practice). Add may be
* slightly slower, depending on hash collisions. Hashcodes are rehashed to reduce collisions and the need to resize. Load factors
* greater than 0.91 greatly increase the chances to resize to the next higher POT size.
*
*
* Unordered sets and maps are not designed to provide especially fast iteration. Iteration is faster with OrderedSet and
* OrderedMap.
*
*
* This implementation uses linear probing with the backward shift algorithm for removal. Hashcodes are rehashed using Fibonacci
* hashing, instead of the more common power-of-two mask, to better distribute poor hashCodes (see [Malte Skarupke's blog post](https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/)). Linear probing continues to work even when all hashCodes collide, just more slowly.
*
* @author Nathan Sweet
* @author Tommy Ettinger
*/
open class IntMap<V> : MutableMap<Int, V> {
companion object {
const val version = Collections.version
}
private var size_ = 0
var keyTable: IntArray
var valueTable: Array<V?>
var zeroValue: V? = null
var hasZeroValue = false
private val loadFactor: Float
private var threshold: Int
/**
* Used by [.place] to bit shift the upper bits of a `long` into a usable range (>= 0 and <=
* [.mask]). The shift can be negative, which is convenient to match the number of bits in mask: if mask is a 7-bit
* number, a shift of -7 shifts the upper 7 bits into the lowest 7 positions. This class sets the shift &gt; 32 and &lt; 64,
* which if used with an int will still move the upper bits of an int to the lower bits due to Java's implicit modulus on
* shifts.
*
* [.mask] can also be used to mask the low bits of a number, which may be faster for some hashcodes, if
* [.place] is overridden.
*/
protected var shift: Int
/**
* A bitmask used to confine hashcodes to the size of the table. Must be all 1 bits in its low positions, ie a power of two
* minus 1. If [.place] is overriden, this can be used instead of [.shift] to isolate usable bits of a
* hash.
*/
protected var mask: Int
@Transient
private var entries1: Entries<V>? = null
@Transient
private var entries2: Entries<V>? = null
@Transient
private var values1: Values<V>? = null
@Transient
private var values2: Values<V>? = null
@Transient
private var keys1: Keys? = null
@Transient
private var keys2: Keys? = null
/** Creates a new map with an initial capacity of 51 and a load factor of 0.8. */
constructor() : this(51, 0.8f)
/**
* Creates a new map with the specified initial capacity and load factor. This map will hold initialCapacity items before
* growing the backing table.
*
* @param initialCapacity The backing array size is initialCapacity / loadFactor, increased to the next power of two.
* @param loadFactor The loadfactor used to determine backing array growth
*/
constructor(initialCapacity: Int = 51, loadFactor: Float = 0.8f) {
if ((loadFactor <= 0f || loadFactor >= 1f)) { throw StateException("loadFactor must be > 0 and < 1: $loadFactor") }
this.loadFactor = loadFactor
val tableSize = tableSize(initialCapacity, loadFactor)
threshold = (tableSize * loadFactor).toInt()
mask = tableSize - 1
shift = java.lang.Long.numberOfLeadingZeros(mask.toLong())
keyTable = IntArray(tableSize)
@Suppress("UNCHECKED_CAST")
valueTable = arrayOfNulls<Any>(tableSize) as Array<V?>
}
/**
* Creates a new map identical to the specified map.
*/
constructor(map: IntMap<out V>) : this((map.keyTable.size * map.loadFactor).toInt(), map.loadFactor) {
System.arraycopy(map.keyTable, 0, keyTable, 0, map.keyTable.size)
System.arraycopy(map.valueTable, 0, valueTable, 0, map.valueTable.size)
size_ = map.size_
zeroValue = map.zeroValue
hasZeroValue = map.hasZeroValue
}
/**
* Returns an index >= 0 and <= [.mask] for the specified `item`.
*
* The default implementation uses Fibonacci hashing on the item's [Object.hashCode]: the hashcode is multiplied by a
* long constant (2 to the 64th, divided by the golden ratio) then the uppermost bits are shifted into the lowest positions to
* obtain an index in the desired range. Multiplication by a long may be slower than int (eg on GWT) but greatly improves
* rehashing, allowing even very poor hashcodes, such as those that only differ in their upper bits, to be used without high
* collision rates. Fibonacci hashing has increased collision rates when all or most hashcodes are multiples of larger
* Fibonacci numbers (see [Malte Skarupke's blog post](https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/)).
*
*
* This method can be overriden to customizing hashing. This may be useful eg in the unlikely event that most hashcodes are
* Fibonacci numbers, if keys provide poor or incorrect hashcodes, or to simplify hashing if keys provide high quality
* hashcodes and don't need Fibonacci hashing: `return item.hashCode() & mask;` */
protected fun place(item: Int): Int {
return (item * -0x61c8864680b583ebL ushr shift).toInt()
}
/**
* Returns the index of the key if already present, else -(index + 1) for the next empty index. This can be overridden in this
* pacakge to compare for equality differently than [Object.equals].
*/
private fun locateKey(key: Int): Int {
val keyTable = keyTable
var i = place(key)
while (true) {
val other = keyTable[i]
if (other == 0) return -(i + 1) // Empty space is available.
if (other == key) return i // Same key was found.
i = i + 1 and mask
}
}
override fun put(key: Int, value: V): V? {
if (key == 0) {
val oldValue = zeroValue
zeroValue = value
if (!hasZeroValue) {
hasZeroValue = true
size_++
}
return oldValue
}
var i = locateKey(key)
if (i >= 0) { // Existing key was found.
val oldValue = valueTable[i]
valueTable[i] = value
return oldValue
}
i = -(i + 1) // Empty space was found.
keyTable[i] = key
valueTable[i] = value
if (++size_ >= threshold) resize(keyTable.size shl 1)
return null
}
open fun putAll(from: IntMap<out V>) {
ensureCapacity(from.size_)
if (from.hasZeroValue) {
put(0, from.zeroValue!!)
}
val keyTable = from.keyTable
val valueTable = from.valueTable
var i = 0
val n = keyTable.size
while (i < n) {
val key = keyTable[i]
if (key != 0) put(key, valueTable[i]!!)
i++
}
}
/**
* Skips checks for existing keys, doesn't increment size, doesn't need to handle key 0.
*/
private fun putResize(key: Int, value: V?) {
val keyTable = keyTable
var i = place(key)
while (true) {
if (keyTable[i] == 0) {
keyTable[i] = key
valueTable[i] = value
return
}
i = i + 1 and mask
}
}
override operator fun get(key: Int): V? {
if (key == 0) return if (hasZeroValue) zeroValue else null
val i = locateKey(key)
return if (i >= 0) valueTable[i] else null
}
operator fun get(key: Int, defaultValue: V): V? {
if (key == 0) return if (hasZeroValue) zeroValue!! else defaultValue
val i = locateKey(key)
return if (i >= 0) valueTable[i] else defaultValue
}
/**
* Returns the value for the removed key, or null if the key is not in the map.
*/
override fun remove(key: Int): V? {
if (key == 0) {
if (!hasZeroValue) return null
hasZeroValue = false
val oldValue = zeroValue
zeroValue = null
size_--
return oldValue
}
var i = locateKey(key)
if (i < 0) return null
val keyTable = keyTable
val valueTable = valueTable
val oldValue = valueTable[i]
val mask = mask
var next = (i + 1) and mask
var k: Int
while (keyTable[next].also { k = it } != 0) {
val placement = place(k)
if ((next - placement and mask) > (i - placement and mask)) {
keyTable[i] = k
valueTable[i] = valueTable[next]
i = next
}
next = (next + 1) and mask
}
keyTable[i] = 0
valueTable[i] = null
size_--
return oldValue
}
/**
* Returns true if the map has one or more items.
*/
fun notEmpty(): Boolean {
return size_ > 0
}
/**
* Returns true if the map is empty.
*/
override fun isEmpty(): Boolean {
return size_ == 0
}
override fun putAll(from: Map<out Int, V>) {
ensureCapacity(from.size)
from.entries.forEach { (k,v) ->
put(k, v)
}
}
/**
* Reduces the size of the backing arrays to be the specified capacity / loadFactor, or less. If the capacity is already less,
* nothing is done. If the map contains more items than the specified capacity, the next highest power of two capacity is used
* instead.
*/
open fun shrink(maximumCapacity: Int) {
if (maximumCapacity < 0) { throw StateException("maximumCapacity must be >= 0: $maximumCapacity") }
val tableSize = tableSize(maximumCapacity, loadFactor)
if (keyTable.size > tableSize) resize(tableSize)
}
/**
* Clears the map and reduces the size of the backing arrays to be the specified capacity / loadFactor, if they are larger.
* */
open fun clear(maximumCapacity: Int) {
val tableSize = tableSize(maximumCapacity, loadFactor)
if (keyTable.size <= tableSize) {
clear()
return
}
size_ = 0
hasZeroValue = false
zeroValue = null
resize(tableSize)
}
@Suppress("UNCHECKED_CAST")
override val entries: MutableSet<MutableMap.MutableEntry<Int, V>>
get() = entries() as MutableSet<MutableMap.MutableEntry<Int, V>>
override val keys: MutableSet<Int>
get() = keys()
override val size: Int
get() = size_
override val values: MutableCollection<V>
get() = values()
override fun clear() {
if (size_ == 0) return
size_ = 0
Arrays.fill(keyTable, 0)
Arrays.fill(valueTable, null)
zeroValue = null
hasZeroValue = false
}
override fun containsValue(value: V): Boolean {
return containsValue(value, false)
}
/**
* Returns true if the specified value is in the map. Note this traverses the entire map and compares every value, which may
* be an expensive operation.
*
* @param identity If true, uses == to compare the specified value with values in the map. If false, uses
* [.equals].
*/
open fun containsValue(value: Any?, identity: Boolean): Boolean {
val valueTable = valueTable
if (value == null) {
if (hasZeroValue && zeroValue == null) return true
val keyTable = keyTable
for (i in valueTable.indices.reversed()) if (keyTable[i] != 0 && valueTable[i] == null) return true
}
else if (identity) {
if (value === zeroValue) return true
for (i in valueTable.indices.reversed()) if (valueTable[i] === value) return true
}
else {
if (hasZeroValue && value == zeroValue) return true
for (i in valueTable.indices.reversed()) if (value == valueTable[i]) return true
}
return false
}
override fun containsKey(key: Int): Boolean {
return if (key == 0) hasZeroValue else locateKey(key) >= 0
}
/**
* Returns the key for the specified value, or <tt>notFound</tt> if it is not in the map. Note this traverses the entire map
* and compares every value, which may be an expensive operation.
*
* @param identity If true, uses == to compare the specified value with values in the map. If false, uses
* [.equals].
*/
fun findKey(value: Any?, identity: Boolean): Int? {
val valueTable = valueTable
if (value == null) {
if (hasZeroValue && zeroValue == null) return 0
val keyTable = keyTable
for (i in valueTable.indices.reversed()) if (keyTable[i] != 0 && valueTable[i] == null) return keyTable[i]
}
else if (identity) {
if (value === zeroValue) return 0
for (i in valueTable.indices.reversed()) if (valueTable[i] === value) return keyTable[i]
}
else {
if (hasZeroValue && value == zeroValue) return 0
for (i in valueTable.indices.reversed()) if (value == valueTable[i]) return keyTable[i]
}
return null
}
/**
* Returns the key for the specified value, or <tt>notFound</tt> if it is not in the map. Note this traverses the entire map
* and compares every value, which may be an expensive operation.
*
* @param identity If true, uses == to compare the specified value with values in the map. If false, uses
* [.equals].
*/
fun findKey(value: Any?, identity: Boolean, notFound: Int): Int {
return findKey(value, identity) ?: notFound
}
/**
* Increases the size of the backing array to accommodate the specified number of additional items / loadFactor. Useful before
* adding many items to avoid multiple backing array resizes.
*/
fun ensureCapacity(additionalCapacity: Int) {
val tableSize = tableSize(size_ + additionalCapacity, loadFactor)
if (keyTable.size < tableSize) resize(tableSize)
}
private fun resize(newSize: Int) {
val oldCapacity = keyTable.size
threshold = (newSize * loadFactor).toInt()
mask = newSize - 1
shift = java.lang.Long.numberOfLeadingZeros(mask.toLong())
val oldKeyTable = keyTable
val oldValueTable = valueTable
keyTable = IntArray(newSize)
@Suppress("UNCHECKED_CAST")
valueTable = arrayOfNulls<Any>(newSize) as Array<V?>
if (size_ > 0) {
for (i in 0 until oldCapacity) {
val key = oldKeyTable[i]
if (key != 0) putResize(key, oldValueTable[i])
}
}
}
override fun hashCode(): Int {
var h = size_
if (hasZeroValue && zeroValue != null) h += zeroValue.hashCode()
val keyTable = keyTable
val valueTable = valueTable
var i = 0
val n = keyTable.size
while (i < n) {
val key = keyTable[i]
if (key != 0) {
h += key * 31
val value: V? = valueTable[i]
if (value != null) h += value.hashCode()
}
i++
}
return h
}
@Suppress("UNCHECKED_CAST")
override fun equals(other: Any?): Boolean {
if (other === this) return true
if (other !is IntMap<*>) return false
other as IntMap<V>
if (other.size_ != size_) return false
if (other.hasZeroValue != hasZeroValue) return false
if (hasZeroValue) {
if (other.zeroValue == null) {
if (zeroValue != null) return false
}
else {
if (other.zeroValue != zeroValue) return false
}
}
val keyTable = keyTable
val valueTable = valueTable
var i = 0
val n = keyTable.size
while (i < n) {
val key = keyTable[i]
if (key != 0) {
val value: V? = valueTable[i]
if (value == null) {
if (other.get(key, ObjectMap.dummy as V) != null) return false
}
else {
if (value != other[key]) return false
}
}
i++
}
return true
}
/**
* Uses == for comparison of each value.
*/
@Suppress("UNCHECKED_CAST")
open fun equalsIdentity(other: Any?): Boolean {
if (other === this) return true
if (other !is IntMap<*>) return false
other as IntMap<V>
if (other.size_ != size_) return false
if (other.hasZeroValue != hasZeroValue) return false
if (hasZeroValue && zeroValue !== other.zeroValue) return false
val keyTable = keyTable
val valueTable = valueTable
var i = 0
val n = keyTable.size
while (i < n) {
val key = keyTable[i]
if (key != 0 && valueTable[i] !== other.get(key, ObjectMap.dummy as V)) return false
i++
}
return true
}
override fun toString(): String {
if (size_ == 0) return "[]"
val buffer = StringBuilder(32)
buffer.append('[')
val keyTable = keyTable
val valueTable = valueTable
var i = keyTable.size
if (hasZeroValue) {
buffer.append("0=")
buffer.append(zeroValue)
}
else {
while (i-- > 0) {
val key = keyTable[i]
if (key == 0) continue
buffer.append(key)
buffer.append('=')
buffer.append(valueTable[i])
break
}
}
while (i-- > 0) {
val key = keyTable[i]
if (key == 0) continue
buffer.append(", ")
buffer.append(key)
buffer.append('=')
buffer.append(valueTable[i])
}
buffer.append(']')
return buffer.toString()
}
/**
* Returns an iterator for the entries in the map. Remove is supported.
*
* If [Collections.allocateIterators] is false, the same iterator instance is returned each time this method is called.
*
* Use the [Entries] constructor for nested or multithreaded iteration.
*/
@Suppress("UNCHECKED_CAST")
open fun entries(): Entries<V?> {
if (allocateIterators) return Entries(this as IntMap<V?>)
if (entries1 == null) {
entries1 = Entries(this as IntMap<V?>)
entries2 = Entries(this as IntMap<V?>)
}
if (!entries1!!.valid) {
entries1!!.reset()
entries1!!.valid = true
entries2!!.valid = false
return entries1 as Entries<V?>
}
entries2!!.reset()
entries2!!.valid = true
entries1!!.valid = false
return entries2 as Entries<V?>
}
/**
* Returns an iterator for the values in the map. Remove is supported.
*
* If [Collections.allocateIterators] is false, the same iterator instance is returned each time this method is called.
* Use the [Entries] constructor for nested or multithreaded iteration.
*/
open fun values(): Values<V> {
if (allocateIterators) return Values(this)
if (values1 == null) {
values1 = Values(this)
values2 = Values(this)
}
if (!values1!!.valid) {
values1!!.reset()
values1!!.valid = true
values2!!.valid = false
return values1 as Values<V>
}
values2!!.reset()
values2!!.valid = true
values1!!.valid = false
return values2 as Values<V>
}
/**
* Returns an iterator for the keys in the map. Remove is supported.
*
* If [Collections.allocateIterators] is false, the same iterator instance is returned each time this method is called.
* Use the [Entries] constructor for nested or multithreaded iteration.
*/
open fun keys(): Keys {
if (allocateIterators) return Keys(this)
if (keys1 == null) {
keys1 = Keys(this)
keys2 = Keys(this)
}
if (!keys1!!.valid) {
keys1!!.reset()
keys1!!.valid = true
keys2!!.valid = false
return keys1!!
}
keys2!!.reset()
keys2!!.valid = true
keys1!!.valid = false
return keys2!!
}
class Entry<V>(val map: IntMap<V?>): MutableMap.MutableEntry<Int, V?> {
override var key = 0
override var value: V? = null
override fun setValue(newValue: V?): V? {
val oldValue = value
map[key] = newValue
value = newValue
return oldValue
}
override fun toString(): String {
return "$key=$value"
}
}
abstract class MapIterator<V, I>(val map: IntMap<V>): Iterable<I>, MutableIterator<I> {
var hasNext = false
var nextIndex = 0
var currentIndex = 0
var valid = true
init {
reset()
}
fun reset() {
currentIndex = INDEX_ILLEGAL
nextIndex = INDEX_ZERO
if (map.hasZeroValue) hasNext = true else findNextIndex()
}
fun findNextIndex() {
val keyTable = map.keyTable
val n = keyTable.size
while (++nextIndex < n) {
if (keyTable[nextIndex] != 0) {
hasNext = true
return
}
}
hasNext = false
}
override fun remove() {
var i = currentIndex
if (i == INDEX_ZERO && map.hasZeroValue) {
map.hasZeroValue = false
map.zeroValue = null
} else if (i < 0) {
throw IllegalStateException("next must be called before remove.");
} else {
val keyTable = map.keyTable
val valueTable = map.valueTable
val mask = map.mask
var next = (i + 1) and mask
var key: Int
while (keyTable[next].also { key = it } != 0) {
val placement = map.place(key)
if ((next - placement and mask) > (i - placement and mask)) {
keyTable[i] = key
valueTable[i] = valueTable[next]
i = next
}
next = (next + 1) and mask
}
keyTable[i] = 0
valueTable[i] = null
if (i != currentIndex) --nextIndex
currentIndex = INDEX_ILLEGAL
map.size_--
}
}
companion object {
private const val INDEX_ILLEGAL = -2
const val INDEX_ZERO = -1
}
}
class Entries<V>(map: IntMap<V?>) : MutableSet<Entry<V?>>, MapIterator<V?, Entry<V?>>(map) {
private val entry = Entry<V?>(map)
/** Note the same entry instance is returned each time this method is called. */
override fun next(): Entry<V?> {
if (!hasNext) throw NoSuchElementException()
if (!valid) throw RuntimeException("#iterator() cannot be used nested.")
val keyTable = map.keyTable
if (nextIndex == INDEX_ZERO) {
entry.key = 0
entry.value = map.zeroValue
}
else {
entry.key = keyTable[nextIndex]
entry.value = map.valueTable[nextIndex]
}
currentIndex = nextIndex
findNextIndex()
return entry
}
override fun hasNext(): Boolean {
if (!valid) throw RuntimeException("#iterator() cannot be used nested.")
return hasNext
}
override fun add(element: Entry<V?>): Boolean {
map.put(element.key, element.value)
return true
}
override fun addAll(elements: Collection<Entry<V?>>): Boolean {
var added = false
elements.forEach {
map.put(it.key, it.value)
added = true
}
return added
}
override val size: Int
get() = map.size_
override fun clear() {
map.clear()
reset()
}
override fun isEmpty(): Boolean {
return map.isEmpty()
}
override fun containsAll(elements: Collection<Entry<V?>>): Boolean {
elements.forEach {(k,v) ->
if (map.get(k) != v) {
return false
}
}
return true
}
override fun contains(element: Entry<V?>): Boolean {
return (map.get(element.key) == element.value)
}
override fun iterator(): MutableIterator<Entry<V?>> {
return this
}
override fun retainAll(elements: Collection<Entry<V?>>): Boolean {
var removed = false
// check zero value first
if (map.hasZeroValue) {
val hasElement = elements.firstOrNull { it.key == 0 } != null
if (hasElement) {
removed = map.remove(0) != null
}
}
// now check remaining entries
map.keyTable.forEach { key ->
if (key == 0) return@forEach
val hasElement = elements.firstOrNull { it.key == key } != null
if (!hasElement) {
removed = map.remove(key) != null || removed
}
}
reset()
return removed
}
override fun removeAll(elements: Collection<Entry<V?>>): Boolean {
var removed = false
elements.forEach { (k,_) ->
removed = map.remove(k) != null || removed
}
reset()
return removed
}
override fun remove(element: Entry<V?>): Boolean {
val removed = map.remove(entry.key) != null
reset()
return removed
}
}
class Values<V>(map: IntMap<V>) : MutableCollection<V>, MapIterator<V, V>(map) {
override fun hasNext(): Boolean {
if (!valid) throw RuntimeException("#iterator() cannot be used nested.")
return hasNext
}
override fun next(): V {
if (!hasNext) throw NoSuchElementException()
if (!valid) throw RuntimeException("#iterator() cannot be used nested.")
val value: V?
value = if (nextIndex == INDEX_ZERO) map.zeroValue else map.valueTable[nextIndex]
currentIndex = nextIndex
findNextIndex()
return value!!
}
override val size: Int
get() = map.size_
override fun clear() {
map.clear()
reset()
}
override fun addAll(elements: Collection<V>): Boolean {
throw IllegalStateException("Cannot add values to a map without keys")
}
override fun add(element: V): Boolean {
throw IllegalStateException("Cannot add values to a map without keys")
}
override fun isEmpty(): Boolean {
return map.isEmpty()
}
override fun containsAll(elements: Collection<V>): Boolean {
elements.forEach {
if (!map.containsValue(it)) {
return false
}
}
return true
}
override fun contains(element: V): Boolean {
return map.containsValue(element)
}
override fun iterator(): MutableIterator<V> {
return this
}
override fun retainAll(elements: Collection<V>): Boolean {
var removed = false
map.keyTable.forEach { key ->
if (key != 0) {
val value = map[key]
if (!elements.contains(value)) {
map.remove(key)
removed = true
}
}
}
reset()
return removed
}
override fun removeAll(elements: Collection<V>): Boolean {
var removed = false
elements.forEach {
val key = map.findKey(it, false)
if (key != null) {
removed = map.remove(key) != null || removed
}
}
reset()
return removed
}
override fun remove(element: V): Boolean {
var removed = false
val key = map.findKey(element, false)
if (key != null) {
removed = map.remove(key) != null
}
reset()
return removed
}
/**
* Returns a new array containing the remaining values.
*/
fun toArray(): Array<V> {
@Suppress("UNCHECKED_CAST")
return Array(map.size_) {next() as Any} as Array<V>
}
}
@Suppress("UNCHECKED_CAST")
class Keys(map: IntMap<*>) : MutableSet<Int>, MapIterator<Any?, Int>(map as IntMap<Any?>) {
override fun hasNext(): Boolean {
if (!valid) throw RuntimeException("#iterator() cannot be used nested.")
return hasNext
}
override operator fun next(): Int {
if (!hasNext) throw NoSuchElementException()
if (!valid) throw RuntimeException("#iterator() cannot be used nested.")
val key = if (nextIndex == INDEX_ZERO) 0 else map.keyTable[nextIndex]
currentIndex = nextIndex
findNextIndex()
return key
}
override val size: Int
get() = map.size_
override fun clear() {
map.clear()
}
override fun addAll(elements: Collection<Int>): Boolean {
var alreadyAdded = false
elements.forEach {
alreadyAdded = alreadyAdded || map.put(it, null) == null
}
return alreadyAdded
}
override fun add(element: Int): Boolean {
return map.put(element, null) == null
}
override fun isEmpty(): Boolean {
return map.size_ == 0
}
override fun containsAll(elements: Collection<Int>): Boolean {
elements.forEach {
if (!map.containsKey(it)) {
return false
}
}
return true
}
override fun contains(element: Int): Boolean {
return map.containsKey(element)
}
override fun iterator(): MutableIterator<Int> {
return this
}
override fun retainAll(elements: Collection<Int>): Boolean {
var removed = false
map.keyTable.forEach {
if (!elements.contains(it)) {
if (map.remove(it) == null) {
removed = true
}
}
}
reset()
return removed
}
override fun removeAll(elements: Collection<Int>): Boolean {
var removed = false
elements.forEach {
if (map.remove(it) == null) {
removed = true
}
}
reset()
return removed
}
override fun remove(element: Int): Boolean {
return map.remove(element) == null
}
/**
* Returns a new array containing the remaining keys.
*/
fun toArray(): IntArray {
val array = IntArray(map.size)
var index = 0
while (hasNext()) {
array[index++] = next()
}
return array
}
/**
* Adds the remaining values to the specified array.
*/
fun toArray(array: IntArray): IntArray {
var index = 0
while (hasNext) {
array[index++] = next()
}
return array
}
}
}