Collections/src/dorkbox/collections/LockFreeIntBiMap.java

439 lines
16 KiB
Java

/*
* Copyright 2018 dorkbox, llc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package dorkbox.collections;
import static dorkbox.collections.IntMap.*;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;
/**
* A bimap (or "bidirectional map") is a map that preserves the uniqueness of its values as well as that of its keys. This constraint
* enables bimaps to support an "inverse view", which is another bimap containing the same entries as this bimap but with reversed keys and values.
*
* This class uses the "single-writer-principle" for lock-free publication.
*
* Since there are only 2 methods to guarantee that modifications can only be called one-at-a-time (either it is only called by
* one thread, or only one thread can access it at a time) -- we chose the 2nd option -- and use 'synchronized' to make sure that only
* one thread can access this modification methods at a time. Getting or checking the presence of values can then happen in a lock-free
* manner.
*
* According to my benchmarks, this is approximately 25% faster than ConcurrentHashMap for (all types of) reads, and a lot slower for
* contended writes.
*
* This data structure is for many-read/few-write scenarios
*/
public
class LockFreeIntBiMap<V> {
// Recommended for best performance while adhering to the "single writer principle". Must be static-final
private static final AtomicReferenceFieldUpdater<LockFreeIntBiMap, IntMap> forwardREF = AtomicReferenceFieldUpdater.newUpdater(
LockFreeIntBiMap.class,
IntMap.class,
"forwardHashMap");
private static final AtomicReferenceFieldUpdater<LockFreeIntBiMap, ObjectIntMap> reverseREF = AtomicReferenceFieldUpdater.newUpdater(
LockFreeIntBiMap.class,
ObjectIntMap.class,
"reverseHashMap");
private volatile IntMap<V> forwardHashMap;
private volatile ObjectIntMap<V> reverseHashMap;
private final int defaultReturnValue;
private final LockFreeObjectIntBiMap<V> inverse;
// synchronized is used here to ensure the "single writer principle", and make sure that ONLY one thread at a time can enter this
// section. Because of this, we can have unlimited reader threads all going at the same time, without contention (which is our
// use-case 99% of the time)
// public static
// void main(String[] args) {
// LockFreeIntBiMap<String> test = new LockFreeIntBiMap<String>();
// String one = "One";
// String four = "Four";
//
// test.put(1, one);
// test.put(2, "Two");
// test.put(3, "Three");
// test.put(4, four);
// // try {
// // test.put(1, four);
// // } catch (IllegalArgumentException e) {
// // }
// test.putForce(1, four);
// test.put(5, one);
//
// System.out.println(test.toString());
//
// System.out.println("Reverse");
// System.out.println(test.inverse().toString());
// }
/**
* Creates a new bimap using @{link Integer#MIN_VALUE}.
*/
public
LockFreeIntBiMap() {
this(Integer.MIN_VALUE);
}
/**
* The default return value is used for various get/put operations on the IntMap/ObjectIntMap.
*
* @param defaultReturnValue value used for various get/put operations on the IntMap/ObjectIntMap.
*/
public
LockFreeIntBiMap(int defaultReturnValue) {
this(new IntMap<V>(), new ObjectIntMap<V>(), defaultReturnValue);
}
/**
* The default return value is used for various get/put operations on the IntMap/ObjectIntMap.
*
* @param defaultReturnValue value used for various get/put operations on the IntMap/ObjectIntMap.
*/
public
LockFreeIntBiMap(IntMap<V> forwardHashMap, ObjectIntMap<V> reverseHashMap, int defaultReturnValue) {
this.forwardHashMap = forwardHashMap;
this.reverseHashMap = reverseHashMap;
this.defaultReturnValue = defaultReturnValue;
this.inverse = new LockFreeObjectIntBiMap<V>(reverseHashMap, forwardHashMap, defaultReturnValue, this);
}
LockFreeIntBiMap(final IntMap<V> forwardHashMap,
final ObjectIntMap<V> reverseHashMap,
final int defaultReturnValue,
final LockFreeObjectIntBiMap<V> inverse) {
this.forwardHashMap = forwardHashMap;
this.reverseHashMap = reverseHashMap;
this.defaultReturnValue = defaultReturnValue;
this.inverse = inverse;
}
/**
* Removes all of the mappings from this bimap.
* The bimap will be empty after this call returns.
*/
public synchronized
void clear() {
forwardHashMap.clear();
reverseHashMap.clear();
}
/**
* @return the inverse view of this bimap, which maps each of this bimap's values to its associated key.
*/
public
LockFreeObjectIntBiMap<V> inverse() {
return inverse;
}
/**
* Associates the specified value with the specified key in this bimap.
* If the bimap previously contained a mapping for the key, the old
* value is replaced. If the given value is already bound to a different
* key in this bimap, the bimap will remain unmodified. To avoid throwing
* an exception, call {@link #putForce(int, Object)} putForce(K, V) instead.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
*
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*
* @throws IllegalArgumentException if the given value is already bound to a different key in this bimap. The bimap will remain
* unmodified in this event. To avoid this exception, call {@link #putForce(int, Object)} putForce(K, V) instead.
*/
public synchronized
V put(final int key, final V value) throws IllegalArgumentException {
V prevForwardValue = this.forwardHashMap.put(key, value);
if (prevForwardValue != null) {
reverseHashMap.remove(prevForwardValue, defaultReturnValue);
}
int prevReverseValue = this.reverseHashMap.get(value, defaultReturnValue);
this.reverseHashMap.put(value, key);
if (prevReverseValue != defaultReturnValue) {
// put the old value back
if (prevForwardValue != null) {
this.forwardHashMap.put(key, prevForwardValue);
}
else {
this.forwardHashMap.remove(key);
}
this.reverseHashMap.put(value, prevReverseValue);
throw new IllegalArgumentException("Value already exists. Keys and values must both be unique!");
}
return prevForwardValue;
}
/**
* Associates the specified value with the specified key in this bimap.
* If the bimap previously contained a mapping for the key, the old
* value is replaced. This is an alternate form of {@link #put(int, Object)}
* that will silently ignore duplicates
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
*
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public synchronized
V putForce(final int key, final V value) {
V prevForwardValue = this.forwardHashMap.put(key, value);
if (prevForwardValue != null) {
reverseHashMap.remove(prevForwardValue, defaultReturnValue);
}
int prevReverseValue = this.reverseHashMap.get(value, defaultReturnValue);
this.reverseHashMap.put(value, key);
if (prevReverseValue != defaultReturnValue) {
forwardHashMap.remove(prevReverseValue);
}
return prevForwardValue;
}
/**
* Copies all of the mappings from the specified map to this map.
* These mappings will replace any mappings that this map had for
* any of the keys currently in the specified map.
*
* @param hashMap mappings to be stored in this map
*
* @throws NullPointerException if the specified map is null
*
* @throws IllegalArgumentException if the given value is already bound to a different key in this bimap. The bimap will remain
* unmodified in this event. To avoid this exception, call {@link #putAllForce(Map)} instead.
*/
public synchronized
void putAll(final Map<Integer, V> hashMap) throws IllegalArgumentException {
LockFreeIntBiMap<V> biMap = new LockFreeIntBiMap<V>();
try {
for (Map.Entry<Integer, V> entry : hashMap.entrySet()) {
Integer key = entry.getKey();
V value = entry.getValue();
biMap.put(key, value);
// we have to verify that the keys/values between the bimaps are unique
if (this.forwardHashMap.containsKey(key)) {
throw new IllegalArgumentException("Key already exists. Keys and values must both be unique!");
}
if (this.reverseHashMap.containsKey(value)) {
throw new IllegalArgumentException("Value already exists. Keys and values must both be unique!");
}
}
} catch (IllegalArgumentException e) {
// do nothing if there is an exception
throw e;
}
// we have checked to make sure that the bimap is unique, AND have checked that we don't already have any of the key/values in ourselves
this.forwardHashMap.putAll(biMap.forwardHashMap);
this.reverseHashMap.putAll(biMap.reverseHashMap);
}
/**
* Copies all of the mappings from the specified map to this map.
* These mappings will replace any mappings that this map had for
* any of the keys currently in the specified map. This is an alternate
* form of {@link #putAll(Map)} putAll(K, V) that will silently
* ignore duplicates
*
* @param hashMap mappings to be stored in this map
*
* @throws NullPointerException if the specified map is null
*/
public synchronized
void putAllForce(final Map<Integer, V> hashMap) {
for (Map.Entry<Integer, V> entry : hashMap.entrySet()) {
Integer key = entry.getKey();
V value = entry.getValue();
putForce(key, value);
}
}
/**
* Removes the mapping for the specified key from this map if present.
*
* @param key key whose mapping is to be removed from the map
*
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public synchronized
V remove(final int key) {
V value = forwardHashMap.remove(key);
if (value != null) {
reverseHashMap.remove(value, defaultReturnValue);
}
return value;
}
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
* <p>
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
* <p>
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link HashMap#containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(int, Object)
*/
@SuppressWarnings("unchecked")
public
V get(final int key) {
// use the SWP to get a lock-free get of the value
return (V) forwardREF.get(this).get(key);
}
/**
* Returns <tt>true</tt> if this bimap contains no key-value mappings.
*
* @return <tt>true</tt> if this bimap contains no key-value mappings
*/
public
boolean isEmpty() {
// use the SWP to get a lock-free get of the value
return forwardREF.get(this)
.size == 0;
}
/**
* Returns the number of key-value mappings in this map. If the
* map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
* <tt>Integer.MAX_VALUE</tt>.
*
* @return the number of key-value mappings in this map
*/
public
int size() {
// use the SWP to get a lock-free get of the value
return forwardREF.get(this)
.size;
}
/**
* DO NOT MODIFY THE MAP VIA THIS (unless you synchronize around it!) It will result in unknown object visibility!
*
* Returns an iterator for the keys in the map. Remove is supported. Note that the same iterator instance is returned each
* time this method is called. Use the {@link Entries} constructor for nested or multithreaded iteration.
*/
public
Keys keys() {
return forwardREF.get(this)
.keys();
}
/**
* DO NOT MODIFY THE MAP VIA THIS (unless you synchronize around it!) It will result in unknown object visibility!
*
* Returns an iterator for the values in the map. Remove is supported. Note that the same iterator instance is returned each
* time this method is called. Use the {@link Entries} constructor for nested or multithreaded iteration.
*/
@SuppressWarnings("unchecked")
public
Values<V> values() {
return forwardREF.get(this)
.values();
}
/**
* DO NOT MODIFY THE MAP VIA THIS (unless you synchronize around it!) It will result in unknown object visibility!
*
* Returns an iterator for the entries in the map. Remove is supported. Note that the same iterator instance is returned each
* time this method is called. Use the {@link Entries} constructor for nested or multithreaded iteration.
*/
public
Entries entries() {
return forwardREF.get(this)
.entries();
}
/**
* Identity equals only!
*/
@Override
public
boolean equals(final Object o) {
return this == o;
}
@Override
public
int hashCode() {
int result = forwardREF.get(this).hashCode();
result = 31 * result + reverseREF.get(this).hashCode();
result = 31 * result + defaultReturnValue;
return result;
}
@Override
public
String toString() {
StringBuilder builder = new StringBuilder("LockFreeIntBiMap {");
Keys keys = keys();
Iterator<V> values = values();
while (keys.hasNext) {
builder.append(keys.next());
builder.append(" (")
.append(values.next())
.append("), ");
}
int length = builder.length();
if (length > 1) {
// delete the ', '
builder.delete(length - 2, length);
}
builder.append('}');
return builder.toString();
}
}