Collections/src/dorkbox/collections/ObjectSet.java

590 lines
17 KiB
Java

/*******************************************************************************
* Copyright 2011 LibGDX.
* Mario Zechner <badlogicgames@gmail.com>
* Nathan Sweet <nathan.sweet@gmail.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/
package dorkbox.collections;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Random;
/** An unordered set where the keys are objects. This implementation uses cuckoo hashing using 3 hashes, random walking, and a
* small stash for problematic keys. Null keys are not allowed. No allocation is done except when growing the table size. <br>
* <br>
* This set performs very fast contains and remove (typically O(1), worst case O(log(n))). Add may be a bit slower, depending on
* hash collisions. Load factors greater than 0.91 greatly increase the chances the set will have to rehash to the next higher POT
* size.<br>
* <br>
* Iteration can be very slow for a set with a large capacity. {@link #clear(int)} and {@link #shrink(int)} can be used to reduce
* the capacity. {@link OrderedSet} provides much faster iteration.
* @author Nathan Sweet */
@SuppressWarnings({"unchecked", "rawtypes", "NullableProblems", "SuspiciousSystemArraycopy"})
public class ObjectSet<T> implements Iterable<T> {
private static final int PRIME1 = 0xbe1f14b1;
private static final int PRIME2 = 0xb4b82e39;
private static final int PRIME3 = 0xced1c241;
public int size;
T[] keyTable;
int capacity, stashSize;
private float loadFactor;
private int hashShift, mask, threshold;
private int stashCapacity;
private int pushIterations;
private ObjectSetIterator iterator1, iterator2;
/** Creates a new set with an initial capacity of 51 and a load factor of 0.8. */
public ObjectSet () {
this(51, 0.8f);
}
/** Creates a new set with a load factor of 0.8.
* @param initialCapacity If not a power of two, it is increased to the next nearest power of two. */
public ObjectSet (int initialCapacity) {
this(initialCapacity, 0.8f);
}
/** Creates a new set with the specified initial capacity and load factor. This set will hold initialCapacity items before
* growing the backing table.
* @param initialCapacity If not a power of two, it is increased to the next nearest power of two. */
public ObjectSet (int initialCapacity, float loadFactor) {
if (initialCapacity < 0) throw new IllegalArgumentException("initialCapacity must be >= 0: " + initialCapacity);
initialCapacity = MathUtil.nextPowerOfTwo((int)Math.ceil(initialCapacity / loadFactor));
if (initialCapacity > 1 << 30) throw new IllegalArgumentException("initialCapacity is too large: " + initialCapacity);
capacity = initialCapacity;
if (loadFactor <= 0) throw new IllegalArgumentException("loadFactor must be > 0: " + loadFactor);
this.loadFactor = loadFactor;
threshold = (int)(capacity * loadFactor);
mask = capacity - 1;
hashShift = 31 - Integer.numberOfTrailingZeros(capacity);
stashCapacity = Math.max(3, (int)Math.ceil(Math.log(capacity)) * 2);
pushIterations = Math.max(Math.min(capacity, 8), (int)Math.sqrt(capacity) / 8);
keyTable = (T[])new Object[capacity + stashCapacity];
}
/** Creates a new set identical to the specified set. */
public ObjectSet (ObjectSet set) {
this((int)Math.floor(set.capacity * set.loadFactor), set.loadFactor);
stashSize = set.stashSize;
System.arraycopy(set.keyTable, 0, keyTable, 0, set.keyTable.length);
size = set.size;
}
/** Returns true if the key was not already in the set. If this set already contains the key, the call leaves the set unchanged
* and returns false. */
public boolean add (T key) {
if (key == null) throw new IllegalArgumentException("key cannot be null.");
T[] keyTable = this.keyTable;
// Check for existing keys.
int hashCode = key.hashCode();
int index1 = hashCode & mask;
T key1 = keyTable[index1];
if (key.equals(key1)) return false;
int index2 = hash2(hashCode);
T key2 = keyTable[index2];
if (key.equals(key2)) return false;
int index3 = hash3(hashCode);
T key3 = keyTable[index3];
if (key.equals(key3)) return false;
// Find key in the stash.
for (int i = capacity, n = i + stashSize; i < n; i++)
if (key.equals(keyTable[i])) return false;
// Check for empty buckets.
if (key1 == null) {
keyTable[index1] = key;
if (size++ >= threshold) resize(capacity << 1);
return true;
}
if (key2 == null) {
keyTable[index2] = key;
if (size++ >= threshold) resize(capacity << 1);
return true;
}
if (key3 == null) {
keyTable[index3] = key;
if (size++ >= threshold) resize(capacity << 1);
return true;
}
push(key, index1, key1, index2, key2, index3, key3);
return true;
}
public void addAll (Array<? extends T> array) {
addAll(array.items, 0, array.size);
}
public void addAll (Array<? extends T> array, int offset, int length) {
if (offset + length > array.size)
throw new IllegalArgumentException("offset + length must be <= size: " + offset + " + " + length + " <= " + array.size);
addAll((T[])array.items, offset, length);
}
public void addAll (T... array) {
addAll(array, 0, array.length);
}
public void addAll (T[] array, int offset, int length) {
ensureCapacity(length);
for (int i = offset, n = i + length; i < n; i++)
add(array[i]);
}
public void addAll (ObjectSet<T> set) {
ensureCapacity(set.size);
for (T key : set)
add(key);
}
/** Skips checks for existing keys. */
private void addResize (T key) {
// Check for empty buckets.
int hashCode = key.hashCode();
int index1 = hashCode & mask;
T key1 = keyTable[index1];
if (key1 == null) {
keyTable[index1] = key;
if (size++ >= threshold) resize(capacity << 1);
return;
}
int index2 = hash2(hashCode);
T key2 = keyTable[index2];
if (key2 == null) {
keyTable[index2] = key;
if (size++ >= threshold) resize(capacity << 1);
return;
}
int index3 = hash3(hashCode);
T key3 = keyTable[index3];
if (key3 == null) {
keyTable[index3] = key;
if (size++ >= threshold) resize(capacity << 1);
return;
}
push(key, index1, key1, index2, key2, index3, key3);
}
private void push (T insertKey, int index1, T key1, int index2, T key2, int index3, T key3) {
T[] keyTable = this.keyTable;
int mask = this.mask;
// Push keys until an empty bucket is found.
T evictedKey;
int i = 0, pushIterations = this.pushIterations;
do {
// Replace the key and value for one of the hashes.
switch (MathUtil.random.nextInt(2)) {
case 0:
evictedKey = key1;
keyTable[index1] = insertKey;
break;
case 1:
evictedKey = key2;
keyTable[index2] = insertKey;
break;
default:
evictedKey = key3;
keyTable[index3] = insertKey;
break;
}
// If the evicted key hashes to an empty bucket, put it there and stop.
int hashCode = evictedKey.hashCode();
index1 = hashCode & mask;
key1 = keyTable[index1];
if (key1 == null) {
keyTable[index1] = evictedKey;
if (size++ >= threshold) resize(capacity << 1);
return;
}
index2 = hash2(hashCode);
key2 = keyTable[index2];
if (key2 == null) {
keyTable[index2] = evictedKey;
if (size++ >= threshold) resize(capacity << 1);
return;
}
index3 = hash3(hashCode);
key3 = keyTable[index3];
if (key3 == null) {
keyTable[index3] = evictedKey;
if (size++ >= threshold) resize(capacity << 1);
return;
}
if (++i == pushIterations) break;
insertKey = evictedKey;
} while (true);
addStash(evictedKey);
}
private void addStash (T key) {
if (stashSize == stashCapacity) {
// Too many pushes occurred and the stash is full, increase the table size.
resize(capacity << 1);
addResize(key);
return;
}
// Store key in the stash.
int index = capacity + stashSize;
keyTable[index] = key;
stashSize++;
size++;
}
/** Returns true if the key was removed. */
public boolean remove (T key) {
int hashCode = key.hashCode();
int index = hashCode & mask;
if (key.equals(keyTable[index])) {
keyTable[index] = null;
size--;
return true;
}
index = hash2(hashCode);
if (key.equals(keyTable[index])) {
keyTable[index] = null;
size--;
return true;
}
index = hash3(hashCode);
if (key.equals(keyTable[index])) {
keyTable[index] = null;
size--;
return true;
}
return removeStash(key);
}
boolean removeStash (T key) {
T[] keyTable = this.keyTable;
for (int i = capacity, n = i + stashSize; i < n; i++) {
if (key.equals(keyTable[i])) {
removeStashIndex(i);
size--;
return true;
}
}
return false;
}
void removeStashIndex (int index) {
// If the removed location was not last, move the last tuple to the removed location.
stashSize--;
int lastIndex = capacity + stashSize;
if (index < lastIndex) {
keyTable[index] = keyTable[lastIndex];
keyTable[lastIndex] = null;
}
}
/** Returns true if the set is empty. */
public boolean isEmpty () {
return size == 0;
}
/** Reduces the size of the backing arrays to be the specified capacity or less. If the capacity is already less, nothing is
* done. If the set contains more items than the specified capacity, the next highest power of two capacity is used instead. */
public void shrink (int maximumCapacity) {
if (maximumCapacity < 0) throw new IllegalArgumentException("maximumCapacity must be >= 0: " + maximumCapacity);
if (size > maximumCapacity) maximumCapacity = size;
if (capacity <= maximumCapacity) return;
maximumCapacity = MathUtil.nextPowerOfTwo(maximumCapacity);
resize(maximumCapacity);
}
/** Clears the set and reduces the size of the backing arrays to be the specified capacity, if they are larger. The reduction
* is done by allocating new arrays, though for large arrays this can be faster than clearing the existing array. */
public void clear (int maximumCapacity) {
if (capacity <= maximumCapacity) {
clear();
return;
}
size = 0;
resize(maximumCapacity);
}
/** Clears the set, leaving the backing arrays at the current capacity. When the capacity is high and the population is low,
* iteration can be unnecessarily slow. {@link #clear(int)} can be used to reduce the capacity. */
public void clear () {
if (size == 0) return;
T[] keyTable = this.keyTable;
for (int i = capacity + stashSize; i-- > 0;)
keyTable[i] = null;
size = 0;
stashSize = 0;
}
public boolean contains (T key) {
int hashCode = key.hashCode();
int index = hashCode & mask;
if (!key.equals(keyTable[index])) {
index = hash2(hashCode);
if (!key.equals(keyTable[index])) {
index = hash3(hashCode);
if (!key.equals(keyTable[index])) return getKeyStash(key) != null;
}
}
return true;
}
/** @return May be null. */
public T get (T key) {
int hashCode = key.hashCode();
int index = hashCode & mask;
T found = keyTable[index];
if (!key.equals(found)) {
index = hash2(hashCode);
found = keyTable[index];
if (!key.equals(found)) {
index = hash3(hashCode);
found = keyTable[index];
if (!key.equals(found)) return getKeyStash(key);
}
}
return found;
}
private T getKeyStash (T key) {
T[] keyTable = this.keyTable;
for (int i = capacity, n = i + stashSize; i < n; i++)
if (key.equals(keyTable[i])) return keyTable[i];
return null;
}
public T first () {
T[] keyTable = this.keyTable;
for (int i = 0, n = capacity + stashSize; i < n; i++)
if (keyTable[i] != null) return keyTable[i];
throw new IllegalStateException("ObjectSet is empty.");
}
/** Increases the size of the backing array to accommodate the specified number of additional items. Useful before adding many
* items to avoid multiple backing array resizes. */
public void ensureCapacity (int additionalCapacity) {
if (additionalCapacity < 0) throw new IllegalArgumentException("additionalCapacity must be >= 0: " + additionalCapacity);
int sizeNeeded = size + additionalCapacity;
if (sizeNeeded >= threshold) resize(MathUtil.nextPowerOfTwo((int)Math.ceil(sizeNeeded / loadFactor)));
}
private void resize (int newSize) {
int oldEndIndex = capacity + stashSize;
capacity = newSize;
threshold = (int)(newSize * loadFactor);
mask = newSize - 1;
hashShift = 31 - Integer.numberOfTrailingZeros(newSize);
stashCapacity = Math.max(3, (int)Math.ceil(Math.log(newSize)) * 2);
pushIterations = Math.max(Math.min(newSize, 8), (int)Math.sqrt(newSize) / 8);
T[] oldKeyTable = keyTable;
keyTable = (T[])new Object[newSize + stashCapacity];
int oldSize = size;
size = 0;
stashSize = 0;
if (oldSize > 0) {
for (int i = 0; i < oldEndIndex; i++) {
T key = oldKeyTable[i];
if (key != null) addResize(key);
}
}
}
private int hash2 (int h) {
h *= PRIME2;
return (h ^ h >>> hashShift) & mask;
}
private int hash3 (int h) {
h *= PRIME3;
return (h ^ h >>> hashShift) & mask;
}
@Override
public int hashCode () {
int h = 0;
for (int i = 0, n = capacity + stashSize; i < n; i++)
if (keyTable[i] != null) h += keyTable[i].hashCode();
return h;
}
@Override
public boolean equals (Object obj) {
if (!(obj instanceof ObjectSet)) return false;
ObjectSet other = (ObjectSet)obj;
if (other.size != size) return false;
T[] keyTable = this.keyTable;
for (int i = 0, n = capacity + stashSize; i < n; i++)
if (keyTable[i] != null && !other.contains(keyTable[i])) return false;
return true;
}
@Override
public String toString () {
return '{' + toString(", ") + '}';
}
public String toString (String separator) {
if (size == 0) return "";
StringBuilder buffer = new StringBuilder(32);
T[] keyTable = this.keyTable;
int i = keyTable.length;
while (i-- > 0) {
T key = keyTable[i];
if (key == null) continue;
buffer.append(key);
break;
}
while (i-- > 0) {
T key = keyTable[i];
if (key == null) continue;
buffer.append(separator);
buffer.append(key);
}
return buffer.toString();
}
/** Returns an iterator for the keys in the set. Remove is supported. Note that the same iterator instance is returned each
* time this method is called. Use the {@link ObjectSetIterator} constructor for nested or multithreaded iteration. */
@Override
public ObjectSetIterator<T> iterator () {
if (iterator1 == null) {
iterator1 = new ObjectSetIterator(this);
iterator2 = new ObjectSetIterator(this);
}
if (!iterator1.valid) {
iterator1.reset();
iterator1.valid = true;
iterator2.valid = false;
return iterator1;
}
iterator2.reset();
iterator2.valid = true;
iterator1.valid = false;
return iterator2;
}
static public <T> ObjectSet<T> with (T... array) {
ObjectSet set = new ObjectSet();
set.addAll(array);
return set;
}
static public class ObjectSetIterator<K> implements Iterable<K>, Iterator<K> {
public boolean hasNext;
final ObjectSet<K> set;
int nextIndex, currentIndex;
boolean valid = true;
public ObjectSetIterator (ObjectSet<K> set) {
this.set = set;
reset();
}
public void reset () {
currentIndex = -1;
nextIndex = -1;
findNextIndex();
}
private void findNextIndex () {
hasNext = false;
K[] keyTable = set.keyTable;
for (int n = set.capacity + set.stashSize; ++nextIndex < n;) {
if (keyTable[nextIndex] != null) {
hasNext = true;
break;
}
}
}
@Override
public void remove () {
if (currentIndex < 0) throw new IllegalStateException("next must be called before remove.");
if (currentIndex >= set.capacity) {
set.removeStashIndex(currentIndex);
nextIndex = currentIndex - 1;
findNextIndex();
} else {
set.keyTable[currentIndex] = null;
}
currentIndex = -1;
set.size--;
}
@Override
public boolean hasNext () {
if (!valid) throw new RuntimeException("#iterator() cannot be used nested.");
return hasNext;
}
@Override
public K next () {
if (!hasNext) throw new NoSuchElementException();
if (!valid) throw new RuntimeException("#iterator() cannot be used nested.");
K key = set.keyTable[nextIndex];
currentIndex = nextIndex;
findNextIndex();
return key;
}
@Override
public ObjectSetIterator<K> iterator () {
return this;
}
/** Adds the remaining values to the array. */
public Array<K> toArray (Array<K> array) {
while (hasNext)
array.add(next());
return array;
}
/** Returns a new array containing the remaining values. */
public Array<K> toArray () {
return toArray(new Array(true, set.size));
}
}
}