UDT/src/udtCommon.cpp

791 lines
19 KiB
C++

/*****************************************************************************
Copyright (c) 2001 - 2010, The Board of Trustees of the University of Illinois.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the
above copyright notice, this list of conditions
and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the University of Illinois
nor the names of its contributors may be used to
endorse or promote products derived from this
software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
/*****************************************************************************
written by
Yunhong Gu, last updated 07/25/2010
*****************************************************************************/
#ifndef WINDOWS
#include <cstring>
#include <cerrno>
#include <unistd.h>
#include <stdio.h>
#ifdef MACOSX
#include <mach/mach_time.h>
#endif
#else
#include <winsock2.h>
#include <ws2tcpip.h>
#include <wspiapi.h>
#endif
#include <cmath>
#include "md5.h"
#include "udtCommon.h"
bool CTimer::m_bUseMicroSecond = false;
uint64_t CTimer::s_ullCPUFrequency = CTimer::readCPUFrequency();
#ifndef WINDOWS
udt_pthread_mutex_t CTimer::m_EventLock = PTHREAD_MUTEX_INITIALIZER;
udt_pthread_cond_t CTimer::m_EventCond = PTHREAD_COND_INITIALIZER;
#else
udt_pthread_mutex_t CTimer::m_EventLock = CreateMutex(NULL, false, NULL);
udt_pthread_cond_t CTimer::m_EventCond = CreateEvent(NULL, false, false, NULL);
#endif
CTimer::CTimer():
m_ullSchedTime(),
m_TickCond(),
m_TickLock()
{
#ifndef WINDOWS
pthread_mutex_init(&m_TickLock, NULL);
pthread_cond_init(&m_TickCond, NULL);
#else
m_TickLock = CreateMutex(NULL, false, NULL);
m_TickCond = CreateEvent(NULL, false, false, NULL);
#endif
}
CTimer::~CTimer()
{
#ifndef WINDOWS
pthread_mutex_destroy(&m_TickLock);
pthread_cond_destroy(&m_TickCond);
#else
CloseHandle(m_TickLock);
CloseHandle(m_TickCond);
#endif
}
void CTimer::rdtsc(uint64_t &x)
{
if (m_bUseMicroSecond)
{
x = getTime();
return;
}
#if defined(LINUX) && defined(I386)
uint32_t lval, hval;
//asm volatile ("push %eax; push %ebx; push %ecx; push %edx");
//asm volatile ("xor %eax, %eax; cpuid");
asm volatile ("rdtsc" : "=a" (lval), "=d" (hval));
//asm volatile ("pop %edx; pop %ecx; pop %ebx; pop %eax");
x = hval;
x = (x << 32) | lval;
#elif defined(LINUX) && defined(AMD64)
uint32_t lval, hval;
asm ("rdtsc" : "=a" (lval), "=d" (hval));
x = hval;
x = (x << 32) | lval;
#elif defined(WINDOWS)
//HANDLE hCurThread = ::GetCurrentThread();
//DWORD_PTR dwOldMask = ::SetThreadAffinityMask(hCurThread, 1);
BOOL ret = QueryPerformanceCounter((LARGE_INTEGER *)&x);
//SetThreadAffinityMask(hCurThread, dwOldMask);
if (!ret)
x = getTime() * s_ullCPUFrequency;
#elif defined(MACOSX)
x = mach_absolute_time();
#else
// use system call to read time clock for other archs
x = getTime() * s_ullCPUFrequency;
#endif
}
uint64_t CTimer::readCPUFrequency()
{
uint64_t frequency = 1; // 1 tick per microsecond.
#if defined(LINUX)
// extract cpu frequency from /proc/cpuinfo
float mhz = 0;
char str[256], p = NULL;
int find = 0;
FILE * fd = fopen("/proc/cpuinfo", "r");
if (fd == NULL) {
// perror("fopen /proc/cpuinfo");
} else {
while (fgets(str, 256, fd)) {
if (strncmp("cpu MHz", str, sizeof("cpu MHz")-1) == 0) {
find = 1;
break;
}
}
fclose(fd);
}
if (find) {
p = str;
while (p++ != ':');
sscanf(p, "%f", &mhz);
frequency = (uint64_t)mhz;
///printf("linux cpu MHz: %f, %lld\n", mhz, frequency);
} else {
printf("Warning!!! /proc/cpuinfo cpu MHz unknown\n");
// original behavior
uint64_t t1, t2;
rdtsc(t1);
timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = 100000000;
nanosleep(&ts, NULL);
rdtsc(t2);
// CPU clocks per microsecond
frequency = (t2 - t1) / 100000;
}
#elif defined(WINDOWS)
int64_t ccf;
if (QueryPerformanceFrequency((LARGE_INTEGER *)&ccf))
frequency = ccf / 1000000;
#elif defined(MACOSX)
mach_timebase_info_data_t info;
mach_timebase_info(&info);
frequency = info.denom * 1000ULL / info.numer;
#endif
// Fall back to microsecond if the resolution is not high enough.
if (frequency < 10)
{
frequency = 1;
m_bUseMicroSecond = true;
}
return frequency;
}
uint64_t CTimer::getCPUFrequency()
{
return s_ullCPUFrequency;
}
void CTimer::sleep(uint64_t interval)
{
uint64_t t;
rdtsc(t);
// sleep next "interval" time
sleepto(t + interval);
}
void CTimer::sleepto(uint64_t nexttime)
{
// Use class member such that the method can be interrupted by others
m_ullSchedTime = nexttime;
uint64_t t;
rdtsc(t);
while (t < m_ullSchedTime)
{
#ifndef NO_BUSY_WAITING
#if defined(LINUX) && defined(I386)
__asm__ volatile ("pause; rep; nop; nop; nop; nop; nop;");
#elif defined(LINUX) && defined(AMD64)
__asm__ volatile ("nop; nop; nop; nop; nop;");
#endif
#else
#ifndef WINDOWS
timeval now;
timespec timeout;
gettimeofday(&now, 0);
if (now.tv_usec < 990000)
{
timeout.tv_sec = now.tv_sec;
timeout.tv_nsec = (now.tv_usec + 10000) * 1000;
}
else
{
timeout.tv_sec = now.tv_sec + 1;
timeout.tv_nsec = (now.tv_usec + 10000 - 1000000) * 1000;
}
pthread_mutex_lock(&m_TickLock);
pthread_cond_timedwait(&m_TickCond, &m_TickLock, &timeout);
pthread_mutex_unlock(&m_TickLock);
#else
WaitForSingleObject(m_TickCond, 1);
#endif
#endif
rdtsc(t);
}
}
void CTimer::interrupt()
{
// schedule the sleepto time to the current CCs, so that it will stop
rdtsc(m_ullSchedTime);
tick();
}
void CTimer::tick()
{
#ifndef WINDOWS
pthread_cond_signal(&m_TickCond);
#else
SetEvent(m_TickCond);
#endif
}
uint64_t CTimer::getTime()
{
//For Cygwin and other systems without microsecond level resolution, uncomment the following three lines
//uint64_t x;
//rdtsc(x);
//return x / s_ullCPUFrequency;
//Specific fix may be necessary if rdtsc is not available either.
#ifndef WINDOWS
timeval t;
gettimeofday(&t, 0);
return t.tv_sec * 1000000ULL + t.tv_usec;
#else
LARGE_INTEGER ccf;
HANDLE hCurThread = ::GetCurrentThread();
DWORD_PTR dwOldMask = ::SetThreadAffinityMask(hCurThread, 1);
if (QueryPerformanceFrequency(&ccf))
{
LARGE_INTEGER cc;
if (QueryPerformanceCounter(&cc))
{
SetThreadAffinityMask(hCurThread, dwOldMask);
return (cc.QuadPart * 1000000ULL / ccf.QuadPart);
}
}
SetThreadAffinityMask(hCurThread, dwOldMask);
return GetTickCount() * 1000ULL;
#endif
}
void CTimer::triggerEvent()
{
#ifndef WINDOWS
pthread_cond_signal(&m_EventCond);
#else
SetEvent(m_EventCond);
#endif
}
void CTimer::waitForEvent()
{
#ifndef WINDOWS
timeval now;
timespec timeout;
gettimeofday(&now, 0);
if (now.tv_usec < 990000)
{
timeout.tv_sec = now.tv_sec;
timeout.tv_nsec = (now.tv_usec + 10000) * 1000;
}
else
{
timeout.tv_sec = now.tv_sec + 1;
timeout.tv_nsec = (now.tv_usec + 10000 - 1000000) * 1000;
}
pthread_mutex_lock(&m_EventLock);
pthread_cond_timedwait(&m_EventCond, &m_EventLock, &timeout);
pthread_mutex_unlock(&m_EventLock);
#else
WaitForSingleObject(m_EventCond, 1);
#endif
}
void CTimer::sleep()
{
#ifndef WINDOWS
usleep(10);
#else
Sleep(1);
#endif
}
//
// Automatically lock in constructor
CGuard::CGuard(udt_pthread_mutex_t& lock):
m_Mutex(lock),
m_iLocked()
{
#ifndef WINDOWS
m_iLocked = pthread_mutex_lock(&m_Mutex);
#else
m_iLocked = WaitForSingleObject(m_Mutex, INFINITE);
#endif
}
// Automatically unlock in destructor
CGuard::~CGuard()
{
#ifndef WINDOWS
if (0 == m_iLocked)
pthread_mutex_unlock(&m_Mutex);
#else
if (WAIT_FAILED != m_iLocked)
ReleaseMutex(m_Mutex);
#endif
}
void CGuard::enterCS(udt_pthread_mutex_t& lock)
{
#ifndef WINDOWS
pthread_mutex_lock(&lock);
#else
WaitForSingleObject(lock, INFINITE);
#endif
}
void CGuard::leaveCS(udt_pthread_mutex_t& lock)
{
#ifndef WINDOWS
pthread_mutex_unlock(&lock);
#else
ReleaseMutex(lock);
#endif
}
void CGuard::createMutex(udt_pthread_mutex_t& lock)
{
#ifndef WINDOWS
pthread_mutex_init(&lock, NULL);
#else
lock = CreateMutex(NULL, false, NULL);
#endif
}
void CGuard::releaseMutex(udt_pthread_mutex_t& lock)
{
#ifndef WINDOWS
pthread_mutex_destroy(&lock);
#else
CloseHandle(lock);
#endif
}
void CGuard::createCond(udt_pthread_cond_t& cond)
{
#ifndef WINDOWS
pthread_cond_init(&cond, NULL);
#else
cond = CreateEvent(NULL, false, false, NULL);
#endif
}
void CGuard::releaseCond(udt_pthread_cond_t& cond)
{
#ifndef WINDOWS
pthread_cond_destroy(&cond);
#else
CloseHandle(cond);
#endif
}
//
CUDTException::CUDTException(int major, int minor, int err):
m_iMajor(major),
m_iMinor(minor)
{
if (-1 == err)
#ifndef WINDOWS
m_iErrno = errno;
#else
m_iErrno = GetLastError();
#endif
else
m_iErrno = err;
}
CUDTException::CUDTException(const CUDTException& e):
m_iMajor(e.m_iMajor),
m_iMinor(e.m_iMinor),
m_iErrno(e.m_iErrno),
m_strMsg()
{
}
CUDTException::~CUDTException()
{
}
const char* CUDTException::getErrorMessage()
{
// translate "Major:Minor" code into text message.
switch (m_iMajor)
{
case 0:
m_strMsg = "Success";
break;
case 1:
m_strMsg = "Connection setup failure";
switch (m_iMinor)
{
case 1:
m_strMsg += ": connection time out";
break;
case 2:
m_strMsg += ": connection rejected";
break;
case 3:
m_strMsg += ": unable to create/configure UDP socket";
break;
case 4:
m_strMsg += ": abort for security reasons";
break;
default:
break;
}
break;
case 2:
switch (m_iMinor)
{
case 1:
m_strMsg = "Connection was broken";
break;
case 2:
m_strMsg = "Connection does not exist";
break;
default:
break;
}
break;
case 3:
m_strMsg = "System resource failure";
switch (m_iMinor)
{
case 1:
m_strMsg += ": unable to create new threads";
break;
case 2:
m_strMsg += ": unable to allocate buffers";
break;
default:
break;
}
break;
case 4:
m_strMsg = "File system failure";
switch (m_iMinor)
{
case 1:
m_strMsg += ": cannot seek read position";
break;
case 2:
m_strMsg += ": failure in read";
break;
case 3:
m_strMsg += ": cannot seek write position";
break;
case 4:
m_strMsg += ": failure in write";
break;
default:
break;
}
break;
case 5:
m_strMsg = "Operation not supported";
switch (m_iMinor)
{
case 1:
m_strMsg += ": Cannot do this operation on a BOUND socket";
break;
case 2:
m_strMsg += ": Cannot do this operation on a CONNECTED socket";
break;
case 3:
m_strMsg += ": Bad parameters";
break;
case 4:
m_strMsg += ": Invalid socket ID";
break;
case 5:
m_strMsg += ": Cannot do this operation on an UNBOUND socket";
break;
case 6:
m_strMsg += ": Socket is not in listening state";
break;
case 7:
m_strMsg += ": Listen/accept is not supported in rendezous connection setup";
break;
case 8:
m_strMsg += ": Cannot call connect on UNBOUND socket in rendezvous connection setup";
break;
case 9:
m_strMsg += ": This operation is not supported in SOCK_STREAM mode";
break;
case 10:
m_strMsg += ": This operation is not supported in SOCK_DGRAM mode";
break;
case 11:
m_strMsg += ": Another socket is already listening on the same port";
break;
case 12:
m_strMsg += ": Message is too large to send (it must be less than the UDT send buffer size)";
break;
case 13:
m_strMsg += ": Invalid epoll ID";
break;
default:
break;
}
break;
case 6:
m_strMsg = "Non-blocking call failure";
switch (m_iMinor)
{
case 1:
m_strMsg += ": no buffer available for sending";
break;
case 2:
m_strMsg += ": no data available for reading";
break;
default:
break;
}
break;
case 7:
m_strMsg = "The peer side has signalled an error";
break;
default:
m_strMsg = "Unknown error";
}
// Adding "errno" information
if ((0 != m_iMajor) && (0 < m_iErrno))
{
m_strMsg += ": ";
#ifndef WINDOWS
char errmsg[1024];
if (strerror_r(m_iErrno, errmsg, 1024) == 0)
m_strMsg += errmsg;
#else
LPVOID lpMsgBuf;
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, m_iErrno, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPTSTR)&lpMsgBuf, 0, NULL);
m_strMsg += (char*)lpMsgBuf;
LocalFree(lpMsgBuf);
#endif
}
// period
#ifndef WINDOWS
m_strMsg += ".";
#endif
return m_strMsg.c_str();
}
int CUDTException::getErrorCode() const
{
return m_iMajor * 1000 + m_iMinor;
}
void CUDTException::clear()
{
m_iMajor = 0;
m_iMinor = 0;
m_iErrno = 0;
}
const int CUDTException::SUCCESS = 0;
const int CUDTException::ECONNSETUP = 1000;
const int CUDTException::ENOSERVER = 1001;
const int CUDTException::ECONNREJ = 1002;
const int CUDTException::ESOCKFAIL = 1003;
const int CUDTException::ESECFAIL = 1004;
const int CUDTException::ECONNFAIL = 2000;
const int CUDTException::ECONNLOST = 2001;
const int CUDTException::ENOCONN = 2002;
const int CUDTException::ERESOURCE = 3000;
const int CUDTException::ETHREAD = 3001;
const int CUDTException::ENOBUF = 3002;
const int CUDTException::EFILE = 4000;
const int CUDTException::EINVRDOFF = 4001;
const int CUDTException::ERDPERM = 4002;
const int CUDTException::EINVWROFF = 4003;
const int CUDTException::EWRPERM = 4004;
const int CUDTException::EINVOP = 5000;
const int CUDTException::EBOUNDSOCK = 5001;
const int CUDTException::ECONNSOCK = 5002;
const int CUDTException::EINVPARAM = 5003;
const int CUDTException::EINVSOCK = 5004;
const int CUDTException::EUNBOUNDSOCK = 5005;
const int CUDTException::ENOLISTEN = 5006;
const int CUDTException::ERDVNOSERV = 5007;
const int CUDTException::ERDVUNBOUND = 5008;
const int CUDTException::ESTREAMILL = 5009;
const int CUDTException::EDGRAMILL = 5010;
const int CUDTException::EDUPLISTEN = 5011;
const int CUDTException::ELARGEMSG = 5012;
const int CUDTException::EINVPOLLID = 5013;
const int CUDTException::EASYNCFAIL = 6000;
const int CUDTException::EASYNCSND = 6001;
const int CUDTException::EASYNCRCV = 6002;
const int CUDTException::ETIMEOUT = 6003;
const int CUDTException::EPEERERR = 7000;
const int CUDTException::EUNKNOWN = -1;
//
bool CIPAddress::ipcmp(const sockaddr* addr1, const sockaddr* addr2, int ver)
{
if (AF_INET == ver)
{
sockaddr_in* a1 = (sockaddr_in*)addr1;
sockaddr_in* a2 = (sockaddr_in*)addr2;
if ((a1->sin_port == a2->sin_port) && (a1->sin_addr.s_addr == a2->sin_addr.s_addr))
return true;
}
else
{
sockaddr_in6* a1 = (sockaddr_in6*)addr1;
sockaddr_in6* a2 = (sockaddr_in6*)addr2;
if (a1->sin6_port == a2->sin6_port)
{
for (int i = 0; i < 16; ++ i)
if (*((char*)&(a1->sin6_addr) + i) != *((char*)&(a2->sin6_addr) + i))
return false;
return true;
}
}
return false;
}
void CIPAddress::ntop(const sockaddr* addr, uint32_t ip[4], int ver)
{
if (AF_INET == ver)
{
sockaddr_in* a = (sockaddr_in*)addr;
ip[0] = a->sin_addr.s_addr;
}
else
{
sockaddr_in6* a = (sockaddr_in6*)addr;
ip[3] = (a->sin6_addr.s6_addr[15] << 24) + (a->sin6_addr.s6_addr[14] << 16) + (a->sin6_addr.s6_addr[13] << 8) + a->sin6_addr.s6_addr[12];
ip[2] = (a->sin6_addr.s6_addr[11] << 24) + (a->sin6_addr.s6_addr[10] << 16) + (a->sin6_addr.s6_addr[9] << 8) + a->sin6_addr.s6_addr[8];
ip[1] = (a->sin6_addr.s6_addr[7] << 24) + (a->sin6_addr.s6_addr[6] << 16) + (a->sin6_addr.s6_addr[5] << 8) + a->sin6_addr.s6_addr[4];
ip[0] = (a->sin6_addr.s6_addr[3] << 24) + (a->sin6_addr.s6_addr[2] << 16) + (a->sin6_addr.s6_addr[1] << 8) + a->sin6_addr.s6_addr[0];
}
}
void CIPAddress::pton(sockaddr* addr, const uint32_t ip[4], int ver)
{
if (AF_INET == ver)
{
sockaddr_in* a = (sockaddr_in*)addr;
a->sin_addr.s_addr = ip[0];
}
else
{
sockaddr_in6* a = (sockaddr_in6*)addr;
for (int i = 0; i < 4; ++ i)
{
a->sin6_addr.s6_addr[i * 4] = ip[i] & 0xFF;
a->sin6_addr.s6_addr[i * 4 + 1] = (unsigned char)((ip[i] & 0xFF00) >> 8);
a->sin6_addr.s6_addr[i * 4 + 2] = (unsigned char)((ip[i] & 0xFF0000) >> 16);
a->sin6_addr.s6_addr[i * 4 + 3] = (unsigned char)((ip[i] & 0xFF000000) >> 24);
}
}
}
//
void CMD5::compute(const char* input, unsigned char result[16])
{
md5_state_t state;
md5_init(&state);
md5_append(&state, (const md5_byte_t *)input, strlen(input));
md5_finish(&state, result);
}